To all who desire to learn

Quantum mechanics (QM; also known as quantum physics, quantum theory, the wave mechanical model, or matrix mechanics), including quantum field theory, is a fundamental theory in physics describing the properties of nature on an atomic scale.
Classical physics, the description of physics that existed before the formulation of the theory of relativity and of quantum mechanics, describes many aspects of nature at ordinary (macroscopic) scale. Quantum mechanics explains the aspects of nature at ordinary (macroscopic) scales but extends this description to the small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale.
Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values (quantization), objects have characteristics of both particles and waves (wave-particle duality), and there are limits to how accurately the value of a physical quantity can be predicted prior to its measurement, given a complete set of initial conditions (the uncertainty principle).
Quantum mechanics arose gradually, from theories to explain observations which could not be reconciled with classical physics, such as Max Planck's solution in 1900 to the black-body radiation problem, and the correspondence between energy and frequency in Albert Einstein's 1905 paper which explained the photoelectric effect
Early quantum theory was profoundly re-conceived in the mid-1920s by Erwin Schrödinger, Werner Heisenberg, Max Born and others. The modern theory is formulated in various specially developed mathematical formalisms. In one of them, a mathematical function, the wave function, provides information about the probability amplitude of energy, momentum, and other physical properties of a particle.
Scientific inquiry into the wave nature of light began in the 17th and 18th centuries, when scientists such as Robert Hooke, Christiaan Huygens and Leonhard Euler proposed a wave theory of light based on experimental observations.
In 1803, English polymathThomas Young described the famous double-slit experiment. This experiment played a major role in the general acceptance of the wave theory of light.
In 1838, Michael Faraday discovered cathode rays. These studies were followed by the 1859 statement of the black-body radiation problem by Gustav Kirchhoff, the 1877 suggestion by Ludwig Boltzmann that the energy states of a physical system can be discrete, and the 1900 quantum hypothesis of Max Planck.
Planck's hypothesis that energy is radiated and absorbed in discrete "quanta" (or energy packets) precisely matched the observed patterns of black-body radiation.
In 1896, Wilhelm Wien empirically determined a distribution law of black-body radiation, called Wien's law. Ludwig Boltzmann independently arrived at this result by considerations of Maxwell's equations. However, it was valid only at high frequencies and underestimated the radiance at low frequencies.
The foundations of quantum mechanics were established during the first half of the 20th century by Max Planck, Niels Bohr, Werner Heisenberg, Louis de Broglie, Arthur Compton, Albert Einstein, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Enrico Fermi, Wolfgang Pauli, Max von Laue, Freeman Dyson, David Hilbert, Wilhelm Wien, Satyendra Nath Bose, Arnold Sommerfeld, and others. The Copenhagen interpretation of Niels Bohr became widely accepted.
Max Planck corrected this model using Boltzmann's statistical interpretation of thermodynamics and proposed what is now called Planck's law, which led to the development of quantum mechanics. After Planck's solution in 1900 to the black-body radiation problem (reported 1859), Albert Einstein offered a quantum-based explanation of the photoelectric effect (1905, reported 1887). Around 1900–1910, the atomic theory but not the corpuscular theory of light
first came to be widely accepted as scientific fact; these latter theories can be considered quantum theories of matter and electromagnetic radiation, respectively. However the photon theory was not widely accepted for a until about 1915. Even until Einstein's Nobel Prize, Niels Bohr did not believe in the photon.
Among the first to study quantum phenomena were Arthur Compton, C. V. Raman, and Pieter Zeeman, each of whom has a quantum effect named after him. Robert Andrews Millikan studied the photoelectric effect experimentally, and Albert Einstein developed a theory for it. At the same time, Ernest Rutherford experimentally discovered the nuclear model of the atom, and Niels Bohr developed a theory of atomic structure, confirmed by the experiments of Henry Moseley. In 1913, Peter Debye extended Bohr's theory by introducing elliptical orbits, a concept also introduced by Arnold Sommerfeld.
This phase is known as old quantum theory.
According to Planck, each energy element (E) is proportional to its frequency (ν):
E=hv
Max Planck is considered the father of the quantum theory.
where h is Planck's constant.
Planck cautiously insisted that this was only an aspect of the processes of absorption and emission of radiation and was not the physical reality of the radiation. In fact, he considered his quantum hypothesis a mathematical trick to get the right answer rather than a sizable discovery.
However, in 1905 Albert Einstein interpreted Planck's quantum hypothesis realistically and used it to explain the photoelectric effect, in which shining light on certain materials can eject electrons from the material. Einstein won the 1921 Nobel Prize in Physics for this work.
Einstein further developed this idea to show that an electromagnetic wave such as light could also be described as a particle (later called the photon), with a discrete amount of energy that depends on its frequency.
In his paper “On the Quantum Theory of Radiation,” Einstein expanded on the interaction between energy and matter to explain the absorption and emission of energy by atoms. Although overshadowed at the time by his general theory of relativity, this paper articulated the mechanism underlying the stimulated emission of radiation,
which became the basis of the laser.
In the mid-1920s, quantum mechanics was developed to become the standard formulation for atomic physics. In the summer of 1925, Bohr and Heisenberg published results that closed the old quantum theory. Due to their particle-like behavior in certain processes and measurements, light quanta came to be called photons (1926).
- Full access to our public library
- Save favorite books
- Interact with authors
To all who desire to learn

Quantum mechanics (QM; also known as quantum physics, quantum theory, the wave mechanical model, or matrix mechanics), including quantum field theory, is a fundamental theory in physics describing the properties of nature on an atomic scale.
Classical physics, the description of physics that existed before the formulation of the theory of relativity and of quantum mechanics, describes many aspects of nature at ordinary (macroscopic) scale. Quantum mechanics explains the aspects of nature at ordinary (macroscopic) scales but extends this description to the small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale.
Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values (quantization), objects have characteristics of both particles and waves (wave-particle duality), and there are limits to how accurately the value of a physical quantity can be predicted prior to its measurement, given a complete set of initial conditions (the uncertainty principle).
- < BEGINNING
- END >
-
DOWNLOAD
-
LIKE(2)
-
COMMENT()
-
SHARE
-
SAVE
-
BUY THIS BOOK
(from $6.79+) -
BUY THIS BOOK
(from $6.79+) - DOWNLOAD
- LIKE (2)
- COMMENT ()
- SHARE
- SAVE
- Report
-
BUY
-
LIKE(2)
-
COMMENT()
-
SHARE
- Excessive Violence
- Harassment
- Offensive Pictures
- Spelling & Grammar Errors
- Unfinished
- Other Problem
COMMENTS
Click 'X' to report any negative comments. Thanks!